T
R = Σ(t-1)P(x) * (1)q(x+t-1) * [(t)P(0)]^s * CFD((t)) +
t=1
T
+ Σ (t)P(x) * [(t-1)(P^s)(0)] * [(t)(q^s)(t-1)] * CFS((t)) +
t=1
T
+ Σ (t-1)P(x) * [(1)(P^i)(x+t-1)] * [(t)(P^s)(0)] * CFS((t)) +
t=1
+ (T)P(x) * [(T)(P^s)(0)] * CFM((T)),
┌ t
│ max(V(t) + max(B(t) - V(t);0) - VAN(y) - Σ [C(h)[1-e(h)] * e^[-r(c)(h)*h] - E(h)];0), dacã, â>0
│ h=y
CF((t)) = <
│ t
│ max(G(t) - VAN(y) - Σ [C(h)[1-e(h)] * e^[-r(c)(h)*h[ - E(h)];0), dacã, â=0,
└ h=y
t t
S(t) = Σ e^[-r(d)(h)*h] [C(h)(1 - e(h)) * 'f0 e^[r(e)(j)] * e^[-r(c)(j)] - E(h)],
h=1 j=h
t t
G(t) = Σ e^[-r(d)(h)*h] [C(h)(1 - e(h)) * 'f0 e^[r(e)(j)] + max(e^[r(g) - e^[-r(e)(j)];0) e^[-r(c)(j)] - E(h)],
h=1 j=h
t
e^[r(d)(t)*t] = min(e^[-r(e)med*t]; e^[-f(0,1)] * e^[-f(1,2)] = 'f0 e^[-f(i-1,i)]),
i=1